Số các giá trị nguyên dương để bất phương trình \({3^{{{\cos }^2}x}} + {2^{{{\sin }^2}x}} \ge m{.3^{{{\sin }^2}x}}\) có nghiệm là
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐặt \({\sin ^2}x = t\left( {0 \le t \le 1} \right)\)
\({3^{{{\cos }^2}x}} + {2^{{{\sin }^2}x}} \ge m{.3^{{{\sin }^2}x}} \Leftrightarrow {3^{\left( {1 – t} \right)}} + {2^t} \ge {3^t} \Leftrightarrow \frac{3}{{{3^t}}} + {2^t} \ge m{.3^t} \Leftrightarrow \frac{3}{{{{\left( {{3^t}} \right)}^2}}} + {\left( {\frac{2}{3}} \right)^t} \ge m\)
Đặt: \(y = \frac{3}{{{9^t}}} + {\left( {\frac{2}{3}} \right)^t}\left( {0 \le t \le 1} \right)\)
\(y’ = 3.{\left( {\frac{1}{9}} \right)^t}.\ln \frac{1}{9} + {\left( {\frac{2}{3}} \right)^t}.\ln \frac{2}{3} < 0 \Rightarrow \) Hàm số luôn nghịch biến
Dựa vào bảng biến thiên suy ra \(m \le 1\) thì phương trình có nghiệm
Suy ra các giá trị nguyên dương cần tìm m = 1.