Tính thể tích khối tròn xoay khi quay hình phẳng xác định bởi: \(\displaystyle y = 2x - {x^2},y = x\), quanh trục \(\displaystyle Ox\).
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có: \(\displaystyle 2x - {x^2} = x \Leftrightarrow {x^2} - x = 0\) \(\displaystyle \Leftrightarrow x\left( {x - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\end{array} \right.\)
Khi đó \(\displaystyle V = \pi \int\limits_0^1 {\left| {{{\left( {2x - {x^2}} \right)}^2} - {x^2}} \right|dx} \) \(\displaystyle = \pi \int\limits_0^1 {\left| {4{x^2} - 4{x^3} + {x^4} - {x^2}} \right|dx} \)
\(\displaystyle = \pi \left| {\int\limits_0^1 {\left( {{x^4} - 4{x^3} + 3{x^2}} \right)dx} } \right|\) \(\displaystyle = \pi \left| {\left. {\left( {\frac{{{x^5}}}{5} - {x^4} + {x^3}} \right)} \right|_0^1} \right|\) \(\displaystyle = \pi \left| {\frac{1}{5} - 1 + 1} \right| = \frac{\pi }{5}\)