Trong các đẳng thức sau đẳng thức nào sai?
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqaM9FrbqvzybssUbxD0bctH52z1f2zLbWECLMB0X % fBP1wA0n3x7XLzYf2y7XfCPbsF7ztF951ECzMCHn2ECbxAG03EY0xF % 7T3ECnxAUbsFETNm91hECrxz4r3EK1hE90hxP5gDCXwATLgDZ91ECz % MCHn2ECbxAG03E20xFEThxMjxyJThxWLgi9TNm913ECzMCHn2EX0cx % J92CGidE9TNm9XfDLHhD7rwF41tFCXwzMrNlGWLzYf2y7HxlCzMCHn % 2EX03EY0hxZLMBGidE9TNm9bcxYL2zOrhFFThxMjxyJThxWLgi9TNn % 91Nx7XLzYf2y7XfCPbsF7jtF9XLBLbcxSvMz05ciCzMCHn2E7ThxZL % MBG0Nx7ntF9HxF7HxFGWLCPDgA0X3x7XLzYf2y7XfCPbsF7ztF951E % CzMCHn2ECbxAG03EY0xF9bWexLMBbXgBcf2CPn2qVrwzqf2zLnharu % avP1wzZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMCG4uz3bqe % e0evGueE0jxyaibaieYlNi-xH8yiVC0xbbL8F4rqqrFfpeea0xe9Lq % -Jc9vqaqpepm0xbbG8FasPYRqj0-yi0dXdbba9pGe9xq-JbbG8A8fr % Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaa % aaaaWdbmaapehapaqaa8qaciGGZbGaaiyAaiaac6gapaWaaWbaaSqa % beaapeGaaGOmaaaakiaadIhacaqGKbGaamiEaiabg2da9aWcpaqaa8 % qadaWcaaWdaeaapeGaeqiWdahapaqaa8qacaaI2aaaaaWdaeaapeWa % aSaaa8aabaWdbiabec8aWbWdaeaapeGaaGOmaaaaa0Gaey4kIipakm % aapehapaqaa8qadaWcaaWdaeaapeGaaGymaiabgkHiTiGacogacaGG % VbGaai4CaiaaikdacaWG4baapaqaa8qacaaIYaaaaiaabsgacaWG4b % Gaeyypa0dal8aabaWdbmaalaaapaqaa8qacqaHapaCa8aabaWdbiaa % iAdaaaaapaqaa8qadaWcaaWdaeaapeGaeqiWdahapaqaa8qacaaIYa % aaaaqdcqGHRiI8aOWaaqGaa8aabaWdbmaalaaapaqaa8qacaWG4bGa % eyOeI0YaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaikdaaaGaci4Cai % aacMgacaGGUbGaaGOmaiaadIhaa8aabaWdbiaaikdaaaaacaGLiWoa % paWaa0baaSqaa8qadaWcaaWdaeaapeGaeqiWdahapaqaa8qacaaI2a % aaaaWdaeaapeWaaSaaa8aabaWdbiabec8aWbWdaeaapeGaaGOmaaaa % aaGccqGHGjsUdaabcaWdaeaapeWaaSaaa8aabaWdbiGacohacaGGPb % GaaiOBa8aadaahaaWcbeqaa8qacaaIZaaaaOGaamiEaaWdaeaapeGa % amiEaaaaaiaawIa7a8aadaqhaaWcbaWdbmaalaaapaqaa8qacqaHap % aCa8aabaWdbiaaiAdaaaaapaqaa8qadaWcaaWdaeaapeGaeqiWdaha % paqaa8qacaaIYaaaaaaaaaa!FAA9! \int\limits_{\frac{\pi }{6}}^{\frac{\pi }{2}} {{{\sin }^2}x{\rm{d}}x = } \int\limits_{\frac{\pi }{6}}^{\frac{\pi }{2}} {\frac{{1 - \cos 2x}}{2}{\rm{d}}x = } \left. {\frac{{x - \frac{1}{2}\sin 2x}}{2}} \right|_{\frac{\pi }{6}}^{\frac{\pi }{2}} \ne \left. {\frac{{{{\sin }^3}x}}{x}} \right|_{\frac{\pi }{6}}^{\frac{\pi }{2}}\)