Trong không gian với hệ tọa độ Oxyz, cho ba điểm \(A\left( {0;{\rm{ }}1;{\rm{ }}1} \right), B\left( {3;{\rm{ }}0; – 1} \right), C\left( {0;{\rm{ }}21; – 19} \right)\) và mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {\left( {y – 1} \right)^2} + {\left( {z – 1} \right)^2} = 1\). \(M\left( {a;{\rm{ }}b;{\rm{ }}c} \right)\) là điểm thuộc mặt cầu \(\left( S \right)\) sao cho biểu thức \(T = 3M{A^2} + 2M{B^2} + M{C^2}\) đạt giá trị nhỏ nhất. Tính tổng a + b + c.

Suy nghĩ và trả lời câu hỏi trước khi xem đáp án

ATNETWORK
ADMICRO
YOMEDIA
ZUNIA9