Giá trị nhỏ nhất của hàm số \(f\left( x \right) = {x^4} - 12{x^2} - 4\) trên đoạn \(\left[ {0;9} \right]\) bằng:
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiXét hàm số \(f\left( x \right) = {x^4} - 12{x^2} - 4\) trên đoạn \(\left[ {0;9} \right]\), ta có:
\(f'\left( x \right) = 4{x^3} - 24x = 4x\left( {{x^2} - 6} \right);f'\left( x \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0 \in \left[ {0;9} \right]}\\{x = \sqrt 6 {\rm{\;}} \in \left[ {0;9} \right]}\\{x = {\rm{\;}} - \sqrt 6 {\rm{\;}} \notin \left[ {0;9} \right]}\end{array}} \right.\)
Và \(f\left( 0 \right) = {\rm{\;}} - 4{\mkern 1mu} {\mkern 1mu} ,{\mkern 1mu} {\mkern 1mu} f\left( {\sqrt 6 } \right) = {\rm{\;}} - 40{\mkern 1mu} {\mkern 1mu} ;{\mkern 1mu} {\mkern 1mu} f\left( 9 \right) = 5585\).
Vậy \(\mathop {\min }\limits_{\left[ {0;9} \right]} f\left( x \right) = \left( {\sqrt 6 } \right) = {\rm{\;}} - 40\).
Chọn B.
Đề thi giữa HK2 môn Toán 12 năm 2021-2022
Trường THPT Nguyễn Trãi