Cho hình chóp đều S.ABCD có cạnh đáy bằng \(a\) và cạnh bên tạo với mặt đáy một góc 60o. Tính thể tích của khối chóp S.ABCD?
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi O là tâm của hình vuông ABCD \( \Rightarrow SO \bot \left( {ABCD} \right)\)\( \Rightarrow \widehat {\left( {SC;\left( {ABCD} \right)} \right)} = \widehat {\left( {SC;OC} \right)} = \widehat {SCO} = {60^0}\)
\(ABCD\) là hình vuông cạnh a \( \Rightarrow \left\{ \begin{array}{l}AC = a\sqrt 2 \Rightarrow OC = \dfrac{a}{{\sqrt 2 }}\\{S_{ABCD}} = {a^2}\end{array} \right.\)
\(\Delta SOC\) vuông tại O \( \Rightarrow SO = OC.\tan \widehat {SCO} = \dfrac{a}{{\sqrt 2 }}.\tan {60^0} = \dfrac{{a\sqrt 3 }}{{\sqrt 2 }}\)
Thể tích khối chóp S.ABCD là: \(V = \dfrac{1}{3}{S_{ABCD}}.SO = \dfrac{1}{3}.{a^2}.\dfrac{{a\sqrt 3 }}{{\sqrt 2 }} = \dfrac{{{a^3}\sqrt 6 }}{6}\).
Chọn: D