Cho hình chóp S.ABC có ba cạnh OA, OB, OC đôi một vuông góc và OA = OB = OC = a. Gọi M là trung điểm cạnh AB . Góc hợp bởi hai véc tơ \(\overrightarrow {BC} \) và \(\overrightarrow {OM} \) bằng
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGắn hệ trục tọa độ Oxyz như hình vẽ với \(A \in Ox;B \in Oy;C \in Oz\) và \(OA = OB = OC = a.\)
Khi đó \(A\left( {a;0;0} \right),B\left( {0;a;0} \right),C\left( {0;0;a} \right) \Rightarrow M\left( {\frac{a}{2};\frac{a}{2};0} \right)\)
Ta có \(\overrightarrow {OM} = \left( {\frac{a}{2};\frac{a}{2};0} \right) \Rightarrow \left| {\overrightarrow {OM} } \right| = \sqrt {\frac{{{a^2}}}{4} + \frac{{{a^2}}}{4} + 0} = \frac{{a\sqrt 2 }}{2}\) và \(\overrightarrow {BC} = \left( {0; - a;a} \right) \Rightarrow \left| {\overrightarrow {BC} } \right| = \sqrt {a{}^2 + a{}^2} = a\sqrt 2 \)
Từ đó \(\cos \left( {\overrightarrow {BC} ;\overrightarrow {OM} } \right) = \frac{{\overrightarrow {BC} .\overrightarrow {OM} }}{{\left| {\overrightarrow {BC} } \right|.\left| {\overrightarrow {OM} } \right|}} = \frac{{\frac{a}{2}.0 + \frac{a}{2}.( - a) + 0.a}}{{a\sqrt 2 .\frac{{a\sqrt 2 }}{2}}} = \frac{{ - \frac{{{a^2}}}{2}}}{{{a^2}}} = - \frac{1}{2}.\)
Nên góc giữa hai véc tơ \(\overrightarrow {BC} ;\overrightarrow {OM} \) là \(120^0\)
Đề thi thử THPT QG môn Toán năm 2019
Sở GD & ĐT Bắc Ninh lần 2