Cho hình chóp \(S.ABCD\) có đáy là hình bình hành. Trên các đoạn \(SA,SB,SC,SD\) lấy lần lượt các điểm \(E,F,G,H\) thỏa mãn \(\frac{SE}{SA}=\frac{SG}{SC}=\frac{1}{3},\frac{SF}{SB}=\frac{SH}{SD}=\frac{2}{3}.\) Tỉ số thể tích khối \(EFGH\) với khối \(S.ABCD\) bằng:
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi \(O\) là tâm hình bình hành \(ABCD.\)
Trong \(\left( SBD \right)\) gọi \(I=FH\cap SO\Rightarrow \frac{SI}{SO}=\frac{2}{3}.\)
Trong \(\left( SAC \right)\) gọi \(J=EG\cap SO\Rightarrow \frac{SJ}{SO}=\frac{1}{3}.\)
\(\frac{{{V}_{SEJF}}}{{{V}_{SAON}}}=\frac{SE}{SA}.\frac{SJ}{SO}.\frac{SF}{SB}=\frac{1}{3}.\frac{1}{3}.\frac{2}{3}=\frac{2}{27}.\)
\(\Rightarrow {{V}_{SEJF}}=\frac{2}{27}{{V}_{SAOB}}=\frac{2}{27}.\frac{1}{4}{{V}_{S.ABCD}}=\frac{1}{54}{{V}_{S.ABCD}}\)
\(\frac{{{V}_{SEIF}}}{{{V}_{SAOB}}}=\frac{SE}{SA}.\frac{SI}{SO}.\frac{SF}{SB}=\frac{1}{3}.\frac{2}{3}.\frac{2}{3}=\frac{4}{27}.\)
\(\Rightarrow {{V}_{SEIF}}=\frac{4}{27}{{V}_{SAOB}}=\frac{4}{27}.\frac{1}{4}{{V}_{S.ABCD}}=\frac{1}{27}{{V}_{S.ABCD}}.\)
\({{V}_{F.EIJ}}={{V}_{S.EIJ}}-{{V}_{SEJF}}=\frac{1}{27}{{V}_{S.ABCD}}-\frac{1}{54}{{V}_{S.ABCD}}=\frac{1}{54}{{V}_{S.ABCD}}\)
Chứng minh tương tự ta có:
\({{V}_{F.IJG}}={{V}_{H.IJG}}={{V}_{H.IJE}}=\frac{1}{54}{{V}_{S.ABCD}}.\)
\({{V}_{EFGH}}={{V}_{F.EJI}}+{{V}_{F.IJG}}+{{V}_{H.IJG}}+{{V}_{H.IJE}}=\frac{4}{54}{{V}_{S.ABCD}}=\frac{2}{27}{{V}_{S.ABCD}}\)
\(\Rightarrow \frac{{{V}_{EFGH}}}{{{V}_{S.ABCD}}}=\frac{2}{27}.\)
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Phan Đình Phùng lần 3