Cho hình chóp tứ giác đều \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a,\) cạnh bên tạo với đáy một góc \({{60}^{0}}.\) Gọi G là trọng tâm của tam giác \(SBD. \) Mặt phẳng \(\left( \alpha \right)\) đi qua \(A,G\) và song song với \(BD,\) cắt \(SB,SC,SD\) lần lượt tại \(E,M,F.\) Tính thể tích \(V\) của khối chóp \(S.AEMF.\)
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi \(O=AC\cap BD.\) Ta có \(\left( SD,\left( ABCD \right) \right)=\left( SD,OD \right)=\widehat{SDO}\Rightarrow \widehat{SDO}={{60}^{0}}.\)
\(\Rightarrow SO=OD\tan \widehat{SDO}=\frac{a\sqrt{2}}{3}\sqrt{3}=\frac{a\sqrt{6}}{2}\Rightarrow {{V}_{S.ABCD}}=\frac{1}{3}SO.{{S}_{ABCD}}=\frac{{{a}^{3}}\sqrt{6}}{6}.\)
Ta có \({{V}_{S.AEMF}}=2{{V}_{S.AEM}}=2\frac{SA}{SA}.\frac{SE}{SB}.\frac{SM}{SC}.{{V}_{S.ABC}}=\frac{2}{3}.\frac{1}{2}{{V}_{S.ABCD}}=\frac{1}{3}.\frac{{{a}^{3}}\sqrt{6}}{6}=\frac{{{a}^{3}}\sqrt{6}}{18}.\)
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Yên Dũng số 2 lần 3