Hai người \(A\) và \(B\) ở cách nhau \(180m\) trên một đoạn đường thẳng và cùng chuyển động thẳng theo một hướng với vận tốc biến thiên theo thời gian, A chuyển động với vận tốc \({v_1}\left( t \right) = 6t + 5\left( {m/s} \right)\), B chuyển dộng với vận tốc \({v_2}\left( t \right) = 2at - 3\left( {m/s} \right)\) (\(a\) là hằng số), trong đó \(t\) (giây) là khoảng thời gian tính từ lúc A,B bắt đầu chuyển động. Biết rằng lúc đầu A đuổi theo B và sau \(10\) (giây) thì đuổi kịp. Hỏi sau \(20\) giây, A cách B bao nhiêu mét?
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiQuãng đường người A đi được trong 10 giây kể từ khi bắt đầu chuyển động là \(\int\limits_0^{10} {\left( {6t + 5} \right)dt} = 350m\)
Quãng đường người B đi được trong 10 giây kể từ khi bắt đầu chuyển động là \(\int\limits_0^{10} {\left( {2at - 3} \right)dt} = \left. {\left( {a.{t^2} - 3t} \right)} \right|_0^{10} = 100a - 30\)
Vì sau 10 giây người A đuổi kịp người B và người A lú ban đầu cách người B là 180m nên ta có phương trình \(100a - 30 + 180 = 350 \Leftrightarrow a = 2\) suy ra \({v_2}\left( t \right) = 4t - 3\left( {m/s} \right)\)
Quãng đường người A đi được trong 20 giây kể từ khi bắt đầu chuyển động là \(\int\limits_0^{20} {\left( {6t + 5} \right)dt} = 1300m\)
Quãng đường người B đi được trong 20 giây kể từ khi bắt đầu chuyển động là \(\int\limits_0^{20} {\left( {4t - 3} \right)dt} = 740m\)
Khoảng cách giữa hai người A và người B sau 20 giây là \(1300 - 180 - 740 = 380\left( m \right)\)
Chọn D.