Có bao nhiêu số tự nhiên gồm 6 chữ số khác nhau trong đó có đúng 3 chữ số lẻ và 3 chữ số chẵn ?
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Lời giải:
Báo saiPhương án 1: Xét các số được lập có 3 chữ số lẻ, 3 chữ số chẵn trong đó không có số 0.
+ Bước 1: Chọn 3 số lẻ, có \(C_5^3 = 10\) cách.
+ Bước 2: Chọn 3 số chẵn, có \(C_4^3 = 4\) cách.
+ Bước 3: Xếp thứ tự 6 chữ số vừa lấy theo hàng ngang, có 6! = 720 cách.
Theo quy tắc nhân thì số các số trong phương án này là: 10.4.720 = 28800 số.
Phương án 2: Xét các số được lập có 3 chữ số lẻ, 3 chữ số chẵn trong đó có số 0.
Tương tự như trên, số các số tự nhiên trong phương án này là: \(C_5^3.C_4^2.5.5! = 36000\) số.
Vậy số các số tự nhiên thỏa mãn yêu cầu là: 28800 + 36000 = 64800 số.
ADMICRO
YOMEDIA
ZUNIA9