Hàm số \(\displaystyle y = \frac{1}{{\sqrt[3]{{3x - 7}}}}\) có đạo hàm là:
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiVới \(\displaystyle x > \frac{7}{3}\) thì \(\displaystyle y = \frac{1}{{\sqrt[3]{{3x - 7}}}} = {\left( {3x - 7} \right)^{ - \frac{1}{3}}}\) nên \(\displaystyle y' = - \frac{1}{3}.3{\left( {3x - 7} \right)^{ - \frac{4}{3}}}\) \(\displaystyle = - {\left( {3x - 7} \right)^{ - \frac{4}{3}}} = - \frac{1}{{\sqrt[3]{{{{\left( {3x - 7} \right)}^4}}}}}\)
Với \(\displaystyle x < \frac{7}{3}\) thì \(\displaystyle y = \frac{1}{{\sqrt[3]{{3x - 7}}}} = - {\left( {7 - 3x} \right)^{ - \frac{1}{3}}}\) nên:
\(\displaystyle y' = \frac{1}{3}.\left( { - 3} \right){\left( {7 - 3x} \right)^{ - \frac{4}{3}}}\) \(\displaystyle = - {\left( {7 - 3x} \right)^{ - \frac{4}{3}}} = - \frac{1}{{\sqrt[3]{{{{\left( {7 - 3x} \right)}^4}}}}}\)\(\displaystyle = - \frac{1}{{\sqrt[3]{{{{\left( {3x - 7} \right)}^4}}}}}\)
Vậy \(\displaystyle y' = - \frac{1}{{\sqrt[3]{{{{(3x - 7)}^4}}}}}\)