Trong tất cả các số phức z thỏa mãn điều kiện sau: \(\left| {z + 1} \right| = \left| {\frac{{z + \bar z}}{2} + 3} \right|\), gọi số phức \(z = a + b{\rm{i}}\) là số phức có môđun nhỏ nhất. Tính S = 2a + b.
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Lời giải:
Báo saiTa có \(\left| {z + 1} \right| = \left| {\frac{{z + \bar z}}{2} + 3} \right| \Leftrightarrow \left| {\left( {a + 1} \right) + b{\rm{i}}} \right| = \left| {a + 3} \right| \Leftrightarrow {\left( {a + 1} \right)^2} + {b^2} = {\left( {a + 3} \right)^2} \Leftrightarrow {b^2} = 4a + 8\).
Do đó \({\left| z \right|^2} = {a^2} + {b^2} = {a^2} + 4a + 8 = {\left( {a + 1} \right)^2} + 4 \ge 4\).
\(\min \left| z \right| = 2\) khi và chỉ khi \(z = – 1 + 4{\rm{i}}\).
Suy ra S = 2a + b = 2
ADMICRO
YOMEDIA
ZUNIA9