Cho cấp số cộng (un) có tất cả các số hạng đều dương thoả mãn \({u_1} + {u_2} + ... + {u_{2018}} = 4\left( {{u_1} + {u_2} + ... + {u_{1009}}} \right)\). Giá trị nhỏ nhất của biểu thức \(P = \log _3^2{u_2} + \log _3^2{u_5} + \log _3^2{u_{14}}\) bằng
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có \({S_{2018}} = \frac{{2018}}{2}\left( {2{u_1} + 2017d} \right)\), \({S_{1009}} = \frac{{1009}}{2}\left( {2{u_1} + 1008d} \right)\)
\({u_1} + {u_2} + ... + {u_{2018}} = 4\left( {{u_1} + {u_2} + ... + {u_{1009}}} \right)\)
\( \Leftrightarrow \frac{{2018}}{2}\left( {2{u_1} + 2017d} \right) = 4.\frac{{1009}}{2}\left( {2{u_1} + 1008d} \right)\)
Dãy số \(\left( {{u_n}} \right)\): \(\frac{d}{2},\frac{{3d}}{2},\frac{{5d}}{2}\),...
Ta có
\(P = \log _3^2{u_2} + \log _3^2{u_5} + \log _3^2{u_{14}}\)
\(\begin{array}{l} = \log _3^2\frac{{3d}}{2} + \log _3^2\frac{{9d}}{2} + \log _3^2\frac{{27d}}{2}\\ = {\left( {1 + {{\log }_3}\frac{d}{2}} \right)^2} + {\left( {2 + {{\log }_3}\frac{d}{2}} \right)^2} + {\left( {3 + {{\log }_3}\frac{d}{2}} \right)^2} \end{array}\)
Đặt \({\log _3}\frac{d}{2} = x\) thì \(P = {\left( {1 + x} \right)^2} + {\left( {2 + x} \right)^2} + {\left( {3 + x} \right)^2}\)
\(\begin{array}{l} = 3{x^2} + 12x + 14\\ = 3{\left( {x + 2} \right)^2} + 2 \ge 2 \end{array}\)
Dấu bằng xảy ra khi \(x = - 2 \Leftrightarrow d = \frac{2}{9}\). Vậy giá trị nhỏ nhất của P bằng 2.
Đề ôn tập Chương 3 Đại số & Giải tích lớp 11 năm 2021
Trường THPT Marie Curie