Cho cấp số nhân lùi vô hạn \(1;\,\, - \dfrac{1}{2};\,\,\dfrac{1}{4};\,\, - \dfrac{1}{8};\,...;{\left( { - \dfrac{1}{2}} \right)^n},\,\,...\) có tổng là một phân số tối giản \(\dfrac{m}{n}\). Tính \(m + 2n\)
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 11
Lời giải:
Báo saiTa có: \(1;\,\, - \dfrac{1}{2};\,\,\dfrac{1}{4};\,\, - \dfrac{1}{8};\,...;{\left( { - \dfrac{1}{2}} \right)^n},\,\,...\) là cấp số nhân lùi vô hạn với \({u_1} = 1,\,\,q = - \dfrac{1}{2}\) nên
\(1 + \left( { - \dfrac{1}{2}} \right) + \dfrac{1}{4} + \left( { - \dfrac{1}{8}} \right) + ...\)\( + {\left( { - \dfrac{1}{2}} \right)^n} = \dfrac{1}{{1 - \dfrac{1}{2}}} = 2\).
\( \Rightarrow m = 2,\,\,n = 1\). Vậy \(m + 2n = 2.2 + 1 = 5\).
Chọn A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi giữa HK2 môn Toán 11 năm 2021-2022
Trường THPT Gia Định
27/11/2024
156 lượt thi
0/40
Bắt đầu thi
ADMICRO
YOMEDIA
ZUNIA9