Cho dãy số (un) được xác định bởi u1 = 2; \({u_n} = 2{u_{n - 1}} + 3n - 1\). Công thức số hạng tổng quát của dãy số đã cho là biểu thức có dạng \(a{.2^n} + bn + c\), với a, b, c là các số nguyên, \(n \ge 2\); \(n \in N\). Khi đó tổng a + b + c có giá trị bằng
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có \({u_n} = 2{u_{n - 1}} + 3n - 1 \Leftrightarrow {u_n} + 3n + 5 = 2\left[ {{u_{n - 1}} + 3\left( {n - 1} \right) + 5} \right]\) với \(n \ge 2\); \(n \in N\).
Đặt \({v_n} = {u_n} + 3n + 5\), ta có \({v_n} = 2{v_{n - 1}}\) với \(n \ge 2\); \(n \in N\).
Như vậy, (vn) là cấp số nhân với công bội q = 2 và \({v_1} = 10\), do đó \({v_n} = {10.2^{n - 1}} = {5.2^n}\).
Do đó \({u_n} + 3n + 5 = {5.2^n}\), hay \({u_n} = {5.2^n} - 3n - 5\) với \(n \ge 2\); \(n \in N\).
Suy ra a = 5, b = -3, c = -5. Nên \(a + b + c = 5 + \left( { - 3} \right) + \left( { - 5} \right) = - 3\).
Đề thi giữa HK2 môn Toán 11 năm 2021
Trường THPT Đặng Trần Côn