Cho \(\Delta ABC\) có trọng tâm \(G\). Gọi \(M,N,P\) lần lượt là trung điểm của các cạnh \(AB,BC,CA\). Phép vị tự nào sau đây biến \(\Delta ABC\) thành \(\Delta NPM\)?
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi G là trọng tâm tam giác ABC. Khi đó
\(\overrightarrow {GN} = - \frac{1}{2}\overrightarrow {GA} \) \( \Rightarrow {V_{\left( {G, - \frac{1}{2}} \right)}}\left( A \right) = N\)
\(\overrightarrow {GP} = - \frac{1}{2}\overrightarrow {GB} \) \( \Rightarrow {V_{\left( {G, - \frac{1}{2}} \right)}}\left( B \right) = P\)
\(\overrightarrow {GM} = - \frac{1}{2}\overrightarrow {GC} \) \( \Rightarrow {V_{\left( {G, - \frac{1}{2}} \right)}}\left( C \right) = M\)
Vậy \({V_{\left( {G, - \frac{1}{2}} \right)}}\left( {\Delta ABC} \right) = \Delta NPM\)
Đáp án C
Đề thi HK1 môn Toán 11 năm 2021-2022
Trường THPT Trường Chinh