Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đạo hàm là \(f'\left( x \right) = {x^2}\left( {{x^2} - 4} \right)\left( {{x^2} - 3x + 2} \right)\left( {x - 3} \right)\). Hàm số có bao nhiêu điểm cực đại?
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\(\begin{array}{*{20}{l}}{f'\left( x \right) = {x^2}\left( {{x^2} - 4} \right)\left( {{x^2} - 3x + 2} \right)\left( {x - 3} \right)}\\{{\mkern 1mu} f'\left( x \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = {\rm{\;}} \pm 2}\\{x = 1}\\{x = 2{\mkern 1mu} }\\{x = 3{\mkern 1mu} }\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = {\rm{\;}} \pm 2}\\{x = 1{\mkern 1mu} }\\{x = 3{\mkern 1mu} }\end{array}} \right.}\end{array}\)
Trong đó \(x = {\rm{\;}} - 2,{\mkern 1mu} {\mkern 1mu} x = 1,{\mkern 1mu} {\mkern 1mu} x = 3\) là các nghiệm đơn, \(x = 0,{\mkern 1mu} {\mkern 1mu} x = 2\) là nghiệm bội 2.
Ta có bảng xét dấu \(f'\left( x \right)\) như sau:
Vậy hàm số đạt cực đại tại 1 điểm là \(x = 1\).
Chọn A.
Đề thi giữa HK1 môn Toán 12 năm 2021-2022
Trường THPT Phan Bội Châu