Cho hình nón có đỉnh S, độ dài đường sing bằng 2a. Một mặt phẳng qua đỉnh S cắt hình nón theo một thiết diện, diện tích lớn nhất của thiết diện bằng bao nhiêu?
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 12
Lời giải:
Báo saiChiều cao của hình nón là:
\(h = \sqrt {{l^2} - {r^2}} = \sqrt {{{\left( {2a} \right)}^2} - {{\left( {a\sqrt 2 } \right)}^2}} = a\sqrt 2 \)
Thiết diện lớn nhất đi qua S và trục của hình nón có diện tích là:
\(S = \dfrac{1}{2}h.2r = \dfrac{1}{2}a\sqrt 2 .2.a\sqrt 2 = 2{a^2}\)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ADMICRO
YOMEDIA
ZUNIA9