Cho hình vuông (C1) có cạnh bằng a. Người ta chia mỗi cạnh của hình vuông thành bốn phần bằng nhau và nối các điểm chia một cách thích hợp để có hình vuông (C2) (Hình vẽ).
Từ hình vuông (C2) lại tiếp tục làm như trên ta nhận được dãy các hình vuông C1, C2, C3,.,Cn ... Gọi Si là diện tích của hình vuông \({C_i}\,\left( {i \in \left\{ {1,2,3,.....} \right\}} \right)\). Đặt \(T = {S_1} + {S_2} + {S_3} + ...{S_n} + ...\). Biết \(T = \frac{{32}}{3}\), tính a?
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiCạnh của hình vuông (C2) là: \({a_2} = \sqrt {{{\left( {\frac{3}{4}a} \right)}^2} + {{\left( {\frac{1}{4}a} \right)}^2}} = \frac{{a\sqrt {10} }}{4}\).
Do đó diện tích \({S_2} = \frac{5}{8}{a^2} = \frac{5}{8}{S_1}\).
Cạnh của hình vuông (C3) là: \({a_3} = \sqrt {{{\left( {\frac{3}{4}{a_2}} \right)}^2} + {{\left( {\frac{1}{4}{a_2}} \right)}^2}} = \frac{{{a_2}\sqrt {10} }}{4} = a{\left( {\frac{{\sqrt {10} }}{4}} \right)^2}\).
Do đó diện tích \({S_3} = {\left( {\frac{5}{8}} \right)^2}{a^2} = \frac{5}{8}{S_2}\).
Lý luận tương tự ta có các S1, S2, S3,...,Sn tạo thành một dãy cấp số nhân lùi vô hạn có \({u_1} = {S_1}\) và công bội \(q = \frac{5}{8}\).
\(T = \frac{{{S_1}}}{{1 - q}} = \frac{{8{a^2}}}{3}\). Với \(T = \frac{{32}}{3}\) ta có \({a^2} = 4 \Leftrightarrow a = 2\).