Cho tam giác ABC cân tại A. Biết rằng độ dài cạnh BC, trung tuyến AM và độ dài cạnh AB theo thứ tự đó lập thành một cấp số nhân có công bội q. Tìm công bội q của cấp số nhân đó.
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có: \(A{M^2} = \frac{{2\left( {A{B^2} + A{C^2}} \right) - B{C^2}}}{4}\) (1)
Do ba cạnh BC, AM, AB lập thành cấp số nhân nên ta có: \(BC.AB = A{M^2}\) (2)
Thay (2) vào (1) ta được \(\frac{{2\left( {A{B^2} + A{C^2}} \right) - B{C^2}}}{4} = BC.AB\)
\( \Leftrightarrow 4A{B^2} - 4AB.BC - B{C^2} = 0\)
\( \Leftrightarrow 4{\left( {\frac{{AB}}{{BC}}} \right)^2} - 4\frac{{AB}}{{BC}} - 1 = 0\)
\( \Leftrightarrow \left[ \begin{array}{l} \frac{{AB}}{{BC}} = \frac{{1 + \sqrt 2 }}{2}\\ \frac{{AB}}{{BC}} = \frac{{1 - \sqrt 2 }}{2}\,\,\,\left( {loai} \right) \end{array} \right.\)
\( \Rightarrow \frac{{AB}}{{BC}} = \frac{{1 + \sqrt 2 }}{2}\)
\( \Rightarrow q = \sqrt {\frac{{1 + \sqrt 2 }}{2}} = \frac{{\sqrt {2 + 2\sqrt 2 } }}{2}\)