Cho tam giác ABCD. Trên các cạnh AB và AC lần lượt lấy hai điểm D và E sao cho BD = CE. Gọi M, N, P, Q thứ tự là trung điểm của BE, CD, DE và BC. Chọn câu đúng nhất.
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTừ giả thiết ta có MP, NP, NQ, QM lần lượt là các đường trung bình của các tam giác BDE, ECD, DCB, BEC (định nghĩa đường trung bình).
Đặt BD = CE = 2a
Áp dụng định lý đường trung bình và giả thiết vào bốn tam giác trên ta được:
\(\begin{array}{l}
MP = \frac{1}{2}B{\rm{D = a;}}\\
{\rm{NQ = }}\frac{1}{2}B{\rm{D}} = a;\\
NP = \frac{1}{2}CE = a;\\
MQ = \frac{1}{2}CE = a.
\end{array}\)
Suy ra MN = NP = PQ = QM
Tứ giác MNPQ có bốn cạnh bằng nhau nên là hình thoi.
Áp dụng tính chất về đường chéo vào hình thoi MNPQ ta được: MN ⊥ PQ
Đáp án cần chọn là: C
Đề thi giữa HK1 môn Toán 8 năm 2022-2023
Trường THCS Đào Duy Từ