Có bao nhiêu giá trị nguyên thuộc (0;5) của m để phương trình \({4^x} - m{.2^{x + 1}} + 2m - 1 = 0\) có 2 nghiệm phân biệt trong đó có đúng một nghiệm dương?
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\(\begin{array}{l}{4^x} - m{.2^{x + 1}} + 2m - 1 = 0\\ \Leftrightarrow \left( {{2^x} - 1} \right)\left( {{2^x} - 2m + 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}{2^x} = 1\\{2^x} = 2m - 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\{2^x} = 2m - 1\left( * \right)\end{array} \right.\end{array}\)
Phương trình ban đầu có 1 nghiệm bằng 0 nên nghiệm còn lại của phương trình phải dương hay (*) phải có nghiệm dương duy nhất.
Mặt khác \(m \in \left( {0;5} \right),m \in \mathbb{Z}\) nên \(m \in \left\{ {2;3;4} \right\}\). Có 3 giá trị của m thỏa mãn.
Chọn D