Có bao nhiêu số tự nhiên x thỏa mãn bất phương trình sau \({\rm{lo}}{{\rm{g}}_3}\frac{{{x^2} - 16}}{{343}} < {\rm{lo}}{{\rm{g}}_7}\frac{{\left( {x - 4} \right)\left( {x + 4} \right)}}{{27}}\)?
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTXĐ: \(D = \left( { - \infty ; - 4} \right) \cup \left( {4; + \infty } \right)\).
Ta có: \({\rm{lo}}{{\rm{g}}_3}\frac{{{x^2} - 16}}{{343}} < {\rm{lo}}{{\rm{g}}_7}\frac{{\left( {x - 4} \right)\left( {x + 4} \right)}}{{27}}\)
\(\begin{array}{l} \Leftrightarrow {\rm{lo}}{{\rm{g}}_3}\frac{{{x^2} - 16}}{{343}} < {\rm{lo}}{{\rm{g}}_7}\frac{{{x^2} - 16}}{{27}}\\ \Leftrightarrow {\rm{lo}}{{\rm{g}}_3}7.\left[ {{\rm{lo}}{{\rm{g}}_7}\left( {{x^2} - 16} \right) - 3} \right] < {\rm{lo}}{{\rm{g}}_7}\left( {{x^2} - 16} \right) - 3{\rm{lo}}{{\rm{g}}_7}3\\ \Leftrightarrow \left( {{\rm{lo}}{{\rm{g}}_3}7 - 1} \right){\rm{.lo}}{{\rm{g}}_7}\left( {{x^2} - 16} \right) < 3{\rm{lo}}{{\rm{g}}_3}7 - 3{\rm{lo}}{{\rm{g}}_7}3\\ \Leftrightarrow {\log _7}\left( {{x^2} - 16} \right) < \frac{{3\left( {{{\log }_3}7 - {{\log }_7}3} \right)}}{{{{\log }_3}7 - 1}}\end{array}\)
\( \Leftrightarrow {\log _7}\left( {{x^2} - 16} \right) < \frac{{3\left( {{{\log }_3}7 - \frac{1}{{{{\log }_3}7}}} \right)}}{{{{\log }_3}7 - 1}}\)\( \Leftrightarrow {\log _7}\left( {{x^2} - 16} \right) < \frac{{3\left( {{{\log }_3}7 + 1} \right)}}{{{{\log }_3}7}}\)
\(\begin{array}{l} \Leftrightarrow {\log _7}\left( {{x^2} - 16} \right) < 3\left( {1 + {{\log }_7}3} \right)\\ \Leftrightarrow {\log _7}\left( {{x^2} - 16} \right) < {\log _7}{21^3}\end{array}\)
\( \Leftrightarrow {x^2} - 16 < {21^3} \Leftrightarrow - \sqrt {9277} < x < \sqrt {9277} \)
Kết hợp với điều kiện xác định ta có: \(\left[ \begin{array}{l} - \sqrt {9277} < x < - 4\\4 < x < \sqrt {9277} \end{array} \right.\)
Vì x là số tự nhiên nên \(x \in \left\{ {5;6;7;...;96} \right\}\).
Chọn D
Đề thi giữa HK2 môn Toán 11 KNTT năm 2023-2024
Trường THPT Bình Phú