Để phương trình \({\cos ^2}\left( {\dfrac{x}{2} - \dfrac{\pi }{4}} \right) = m\) có nghiệm ta chọn
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 11
Lời giải:
Báo saiTa có: \({\cos ^2}\left( {\dfrac{x}{2} - \dfrac{\pi }{4}} \right) = \dfrac{{1 + \cos \left( {x - \dfrac{\pi }{2}} \right)}}{2} = m \) \(\Leftrightarrow \cos \left( {x - \dfrac{\pi }{2}} \right) = 2m - 1\)
Phương trình có nghiệm khi và chỉ khi: \(2m - 1 \in \left[ { - 1;1} \right] \) \(\Leftrightarrow 2m \in \left[ {0;2} \right] \Leftrightarrow m \in \left[ {0;1} \right]\)
Chọn đáp án B.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi HK1 môn Toán 11 năm 2021-2022
Trường THPT Trần Khai Nguyên
27/11/2024
60 lượt thi
0/40
Bắt đầu thi
ADMICRO
YOMEDIA
ZUNIA9