Điều kiện xác định của phương trình \(x + 2 - \dfrac{1}{{\sqrt {x + 2} }} = \dfrac{{\sqrt {4 - 3x} }}{{x + 1}}\) là
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 10
Lời giải:
Báo saiPhương trình \(x + 2 - \dfrac{1}{{\sqrt {x + 2} }} = \dfrac{{\sqrt {4 - 3x} }}{{x + 1}}\) được xác định khi và chỉ khi
\(\left\{ \begin{array}{l}x + 2 > 0\\4 - 3x \ge 0\\x + 1 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > - 2\\x \le \dfrac{4}{3}\\x \ne - 1\end{array} \right. \)
\(\Leftrightarrow \left\{ \begin{array}{l} - 2 < x \le \dfrac{4}{3}\\x \ne - 1\end{array} \right.\)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ADMICRO
YOMEDIA
ZUNIA9