Giá trị của giới hạn \(\mathop {\lim }\limits_{x \to - \infty } \left( {x - {x^3} + 1} \right)\) là
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 11
Lời giải:
Báo sai\(\begin{array}{l}
\mathop {\lim }\limits_{x \to - \infty } \left( {x - {x^3} + 1} \right)\\
= \mathop {\lim }\limits_{x \to - \infty } {x^3}\left( {\frac{1}{{{x^2}}} - 1 + \frac{1}{{{x^3}}}} \right) = + \infty \\
\left\{ \begin{array}{l}
li{m_{x \to - \infty }}{x^3} = - \infty \\
li{m_{x \to - \infty }}(\frac{1}{{{x^2}}} - 1 + \frac{1}{{{x^3}}}) = - 1 < 0
\end{array} \right.
\end{array}\)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ADMICRO
YOMEDIA
ZUNIA9