Hai nguồn sóng kết hợp \({O_1},{O_2}\) cách nhau 25cm, dao động cùng pha. Ở mặt chất lỏng, điểm M cách \({O_1},{O_2}\) lần lượt là 15cm và 20cm dao động với biên độ cực đại. Số điểm dao động với biên độ cực đại trên \(M{O_2}\) nhiều hơn so với trên \(M{O_1}\) là 8. Xét các điểm trên mặt chất lỏng thuộc đường thẳng vuông góc với \({O_1}{O_2}\) tại \({O_1}\), điểm dao động với biên độ cực đại cách M một đoạn nhỏ nhất là
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi số cực đại trên \(M{O_1}\) là m \( \Rightarrow \) số cực đại trên \(M{O_2}\) là m + 8
Tổng số cực đại giao thoa là: \(N = m + m + 8 + 1 = 2m + 9\;\) (tính cả đường trung trực)
Vậy trên mỗi nửa đoạn \({O_1}{O_2}\) có (m + 4) cực đại \( \Rightarrow \) tại m là cực đại bậc 4
Ta có: \(M{O_2} - M{O_1} = k\lambda \Rightarrow 20 - 15 = 4\lambda \\ \Rightarrow \lambda = 1,25{\mkern 1mu} {\mkern 1mu} \left( {cm} \right)\)
Số cực đại trên mỗi nửa đoạn \({O_1}{O_2}\)là: \(N = \left[ {\frac{{{O_1}{O_2}}}{\lambda }} \right] = \left[ {\frac{{25}}{{1,25}}} \right] = 20\)
Ta có hình vẽ:
Đặt MH = x , ta có:
\(\begin{array}{*{20}{l}}{{O_1}{O_2} = {O_1}H + {O_2}H\\ \Rightarrow {O_1}{O_2} = \sqrt {M{O_2}^2 - {x^2}} + \sqrt {M{O_1}^2 - {x^2}} }\\{ \Rightarrow 25 = \sqrt {{{20}^2} - {x^2}} + \sqrt {{{15}^2} - {x^2}} \Rightarrow x = 12{\mkern 1mu} {\mkern 1mu} \left( {cm} \right) \\\Rightarrow {O_1}H = 9{\mkern 1mu} {\mkern 1mu} \left( {cm} \right)}\end{array}\)
Để N gần M nhất, khoảng cách \({O_1}N\;\) gần với x nhất
Gọi N là cực đại bậc k, \({O_1}N = y\) , ta có: \(N{O_2} - N{O_1} = k\lambda \Rightarrow \sqrt {{y^2} + {{25}^2}} - y = k.1,25\)
Với \(y = 12{\mkern 1mu} {\mkern 1mu} cm \Rightarrow k = 12,58 \Rightarrow k = 13\)
\(\begin{array}{*{20}{l}}{ \Rightarrow \sqrt {{y^2} + {{25}^2}} - y = 13.1,25 \Rightarrow y \approx 11,1{\mkern 1mu} {\mkern 1mu} \left( {cm} \right)}\\{ \Rightarrow MN = \sqrt {{O_1}{H^2} + {{\left( {MH - {O_1}N} \right)}^2}} \\= 9,045{\mkern 1mu} {\mkern 1mu} \left( {cm} \right) = 90,45{\mkern 1mu} {\mkern 1mu} \left( {mm} \right)}\end{array}\)
Chọn A.
Đề thi giữa HK1 môn Vật Lý 12 năm 2022-2023
Trường THPT Trần Đại Nghĩa