Hãy xem trong lời giải của bài toán sau đây có bước nào bị sai?

Bài toán: chứng minh rằng với mọi số nguyên dương n, mệnh đề sau đây đúng:

A(n) : “nếu a và b là những số nguyên dương mà max{a,b} = n thì a = b”

Chứng minh :

Bước 1: A(1):”nếu a,b là những số nguyên dương mà max{a,b} = 1 thì a = b”

Mệnh đề A(1) đúng vì max{a,b} = 1 và a,b là những số nguyên dương thì a = b =1.

Bước 2: giả sử A(k) là mệnh đề đúng vơi k≥1

Bước 3: xét max{a,b} = k+1 ⇒ max{a-1,b-1} = k+ 1-1 = k

Do a(k) là mệnh đề đúng nên a- 1= b-1 ⇒ a = b ⇒ A(k+1) đúng.

Vậy A(n) đúng với mọi n ∈N*

Suy nghĩ và trả lời câu hỏi trước khi xem đáp án

ATNETWORK
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

Đề thi giữa HK2 môn Toán 11 năm 2021

Trường THPT Phan Văn Trị

30/11/2024
6 lượt thi
0/40
Bắt đầu thi
ADMICRO
YOMEDIA
ZUNIA9