Tập hợp tất cả các giá trị thực của tham số để đường thẳng \(y = - 2x + m\) cắt đồ thị hàm số \(y = \dfrac{{x + 1}}{{x - 2}}\) tại hai điểm phân biệt là:
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐể đường thẳng \(y = - 2x + m\) cắt đồ thị hàm số \(y = \dfrac{{x + 1}}{{x - 2}}\) tại hai điểm phân biệt thì phương trình\( - 2x + m = \dfrac{{x + 1}}{{x - 2}}\) có hai nghiệm phân biệt. Khi đó ta có
\( - 2x + m = \dfrac{{x + 1}}{{x - 2}} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{ - 2x\left( {x - 2} \right) + m\left( {x - 2} \right) = x + 1}\\{x \ne 2}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{2{x^2} - \left( {m + 3} \right)x + \left( {2m + 1} \right) = 0{\mkern 1mu} \left( 1 \right)}\\{x \ne 2}\end{array}} \right..\)
Phương trình \(1\) có hai nghiệm phân biệt khi và chỉ khi
\(\Delta = {\left( {m + 3} \right)^2} - 4.2.\left( {2m + 1} \right) > 0 \Leftrightarrow {m^2} - 10m + 1 > 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m > 5 + 2\sqrt 6 }\\{m < 5 - 2\sqrt 6 }\end{array}} \right..\)
Lưu ý rằng \({2.2^2} - \left( {m + 3} \right).2 + \left( {2m + 1} \right) = 1 \ne 0,{\mkern 1mu} {\mkern 1mu} \forall m \in \mathbb{R}\) nên khi đó phương trình (1) nếu có nghiệm thì nghiệm này sẽ khác 2. Vậy tập hợp tất cả các giá trị của \(m\) để đường thẳng \(y = - 2x + m\) cắt đồ thị hàm số tại hai điểm phân biệt là \(m \in \left( { - \infty ;5 - 2\sqrt 6 } \right) \cup \left( {5 + 2\sqrt 6 ; + \infty } \right).\)
Chọn A.
Đề thi giữa HK1 môn Toán 12 năm 2021-2022
Trường THPT Phan Bội Châu