Tiếp tuyến của đồ thị hàm số \(y = {x^3} + 3{x^2}\) tại điểm có hoành độ \({x_0} = 1\) có phương trình là
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 11
Lời giải:
Báo saiTXĐ: \(D = \mathbb{R}\).
Ta có: \(y' = 3{x^2} + 6x\) \( \Rightarrow y'\left( 1 \right) = {3.1^2} + 6.1 = 9\). Mặt khác có \({y_0} = {1^3} + {3.1^2} = 4\).
Vậy tiếp tuyến của đồ thị hàm số \(y = {x^3} + 3{x^2}\) tại điểm có hoành độ \({x_0} = 1\) có phương trình là:
\(y = 9\left( {x - 1} \right) + 4\)\( \Leftrightarrow y = 9x - 5\)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ADMICRO
YOMEDIA
ZUNIA9