Tìm nguyên hàm \(F\left( x \right)\) của hàm số \(f\left( x \right) = {\tan ^2}x\) biết phương trình \(F\left( x \right) = 0\) có một nghiệm bằng \(\frac{\pi }{4}.\)
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 12
Lời giải:
Báo saiTa có \(F\left( x \right)\) là nguyên hàm của hàm số \(f\left( x \right) = {\tan ^2}x\) nên
\(\begin{array}{l}F\left( x \right) = \int {{{\tan }^2}x} dx\\ \Rightarrow F\left( x \right) = \int {\left( {\frac{1}{{{{\cos }^2}x}} - 1} \right)dx} \\ \Rightarrow F\left( x \right) = \tan x - x + C\end{array}\)
Mà \(F\left( {\frac{\pi }{4}} \right) = 0 \Rightarrow 1 - \frac{\pi }{4} + C = 0\)\( \Leftrightarrow C = \frac{\pi }{4} - 1.\)
Vậy \(F\left( x \right) = \tan x - x + \frac{\pi }{4} - 1.\)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ADMICRO
YOMEDIA
ZUNIA9