Tìm số giá trị nguyên của \(m\) thuộc đoạn \(\left[ { - 2019;2019} \right]\) để phương trình sau có nghiệm \(2\sin 2x + \left( {m - 1} \right)\cos 2x = m + 1\)
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 11
Lời giải:
Báo saiPhương trình \(2\sin 2x + \left( {m - 1} \right)\cos 2x = m + 1\) có nghiệm khi và chỉ khi:
\(\begin{array}{l}\,\,\,\,\,{2^2} + {\left( {m - 1} \right)^2} \ge {\left( {m + 1} \right)^2}\\ \Leftrightarrow 4 + {m^2} - 2m + 1 \ge {m^2} + 2m + 1\\ \Leftrightarrow 4m \le 4 \Leftrightarrow m \le 1\end{array}\)
Kết hợp điều kiện \(m \in \left[ { - 2019;2019} \right] \Rightarrow m \in \left[ { - 2019;1} \right]\).
Vậy có 2021 giá trị nguyên của \(m\) thỏa mãn yêu cầu bài toán.
Chọn A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi giữa HK1 môn Toán 11 năm 2021-2022
Trường THPT Trần Đại Nghĩa
27/11/2024
294 lượt thi
0/40
Bắt đầu thi
ADMICRO
YOMEDIA
ZUNIA9