Tìm tất cả các giá trị thực của tham số \(m\) để hàm số \(y = \sqrt {x - m} + \sqrt {2x - m - 1} \) xác định trên \(\left( {0; + \infty } \right).\)
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiHàm số xác định khi \(\left\{ {\begin{array}{*{20}{l}}
{x - m \geqslant 0} \\
{2x - m - 1 \geqslant 0}
\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
{x \geqslant m} \\
{x \geqslant \frac{{m + 1}}{2}}
\end{array}} \right.{\text{ }}\left( * \right).\)
TH1: Nếu \(m \ge \frac{{m + 1}}{2} \Leftrightarrow m \ge 1\) thì \(\left( * \right) \Leftrightarrow x \ge m\). Suy ra tập xác định của hàm số là \({\rm{D}} = \left[ {m; + \infty } \right)\)
Khi đó, hàm số xác định trên \(\left( {0; + \infty } \right)\) khi và chỉ khi \(\left( {0; + \infty } \right) \subset \left[ {m; + \infty } \right) \Leftrightarrow m \le 0\).Không thỏa mãn điều kiện \(m \ge 1\).
TH2: Nếu \(m \le \frac{{m + 1}}{2} \Leftrightarrow m \le 1\) thì \(\left( * \right) \Leftrightarrow x \ge \frac{{m + 1}}{2}\). Suy ra tập xác định của hàm số là \({\rm{D}} = \left[ {\frac{{m + 1}}{2}; + \infty } \right)\).
Khi đó, hàm số xác định trên \(\left( {0; + \infty } \right)\) khi và chỉ khi \(\left( {0; + \infty } \right) \subset \left[ {\frac{{m + 1}}{2}; + \infty } \right)\) \( \Leftrightarrow \frac{{m + 1}}{2} \le 0 \Leftrightarrow m \le - 1\) (Thỏa mãn điều kiện \(m \le 1\)). Vậy \(m \le - 1\) thỏa yêu cầu bài toán.
Chọn D.
Đề thi HK1 môn Toán 10 CTST năm 2022-2023
Trường THPT Lý Tự Trọng