Tính giá trị của biểu thức \(A = \dfrac{3}{2} - \dfrac{5}{6} + \dfrac{7}{{12}} - \dfrac{9}{{20}} + \dfrac{{11}}{{30}}\) \( - \dfrac{{13}}{{42}} + \dfrac{{15}}{{56}} - \dfrac{{17}}{{72}} + \dfrac{{19}}{{90}}.\)
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có:
\(A = \dfrac{3}{2} - \dfrac{5}{6} + \dfrac{7}{{12}} - \dfrac{9}{{20}} + \dfrac{{11}}{{30}}\)\( - \dfrac{{13}}{{42}} + \dfrac{{15}}{{56}} - \dfrac{{17}}{{72}} + \dfrac{{19}}{{90}}\)
\( = \dfrac{3}{{1.2}} - \dfrac{5}{{2.3}} + \dfrac{7}{{3.4}} - \dfrac{9}{{4.5}} + \dfrac{{11}}{{5.6}}\)\( - \dfrac{{13}}{{6.7}} + \dfrac{{15}}{{7.8}} - \dfrac{{17}}{{8.9}} + \dfrac{{19}}{{9.10}}\)
\( = \dfrac{3}{1} - \dfrac{3}{2} - \dfrac{5}{2} + \dfrac{5}{3}\)\( + \dfrac{7}{3} - \dfrac{7}{4} - \dfrac{9}{4}\)\( + \dfrac{9}{5} + \dfrac{{11}}{5} - \dfrac{{11}}{6} - \dfrac{{13}}{6} + \)\(\dfrac{{13}}{7} + \dfrac{{15}}{7} - \dfrac{{15}}{8} - \dfrac{{17}}{8}\)\( + \dfrac{{17}}{9} + \dfrac{{19}}{9} - \dfrac{{19}}{{10}}\)
\( = 3 + \left( {\dfrac{{ - 3}}{2} - \dfrac{5}{2}} \right) + \left( {\dfrac{5}{3} + \dfrac{7}{3}} \right)\)\( + \left( { - \dfrac{7}{4} - \dfrac{9}{4}} \right) + \left( {\dfrac{9}{5} + \dfrac{{11}}{5}} \right)\)\( + \left( { - \dfrac{{11}}{6} - \dfrac{{13}}{6}} \right) + \left( {\dfrac{{13}}{7} + \dfrac{{15}}{7}} \right)\)\( + \left( { - \dfrac{{15}}{8} - \dfrac{{17}}{8}} \right) + \left( {\dfrac{{17}}{9} + \dfrac{{19}}{9}} \right) - \dfrac{{19}}{{10}}\)
\( = 3 - 4 + 4 - 4 + 4 - 4\)\( + 4 - 4 + 4 - \dfrac{{19}}{{10}}\)
\( = 3 - \dfrac{{19}}{{10}} = \dfrac{{11}}{{10}}\)