Tính thể tích của khối tròn xoay khi cho hình phẳng giới hạn bởi đường thẳng \(3x - 2\) và đồ thị hàm số \(y = {x^2}\) quanh quanh trục Ox.
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 12
Lời giải:
Báo saiXét phương trình hoành độ giao điểm \(3x - 2 = {x^2} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 1}\\{x = 2}\end{array}} \right.\).
Vậy thể tích của khối tròn xoay khi cho hình phẳng giới hạn bởi đường thẳng \(3x - 2\) và đồ thị hàm số \(y = {x^2}\) quanh quanh trục Ox là \(V = \pi \int\limits_1^2 {\left| {{{\left( {3x - 2} \right)}^2} - {x^4}} \right|dx} {\rm{\;}} = \dfrac{{4\pi }}{5}\).
Chọn D.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi giữa HK2 môn Toán 12 năm 2021-2022
Trường THPT Nguyễn Trãi
30/11/2024
37 lượt thi
0/40
Bắt đầu thi
ADMICRO
YOMEDIA
ZUNIA9