Trong bốn giới hạn sau đây, giới hạn nào bằng \(2?\)
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai+ Đáp án A : \(\lim \frac{{n + 1}}{{2n - 1}} = \lim \frac{{\frac{n}{n} + \frac{1}{n}}}{{\frac{{2n}}{n} - \frac{1}{n}}}\)\( = \lim \frac{{1 + \frac{1}{n}}}{{2 - \frac{1}{n}}} = \frac{1}{2} \ne 2\) nên loại A.
+ Đáp án B : \(\lim \frac{{1 - 4n}}{{2n + 3}} = \lim \frac{{\frac{1}{n} - \frac{{4n}}{n}}}{{\frac{{2n}}{n} + \frac{3}{n}}}\)\( = \lim \frac{{\frac{1}{n} - 4}}{{2 + \frac{3}{n}}} = \frac{{ - 4}}{2} = - 2 \ne 2\) nên loại B.
+ Đáp án C : \(\lim \frac{{2n + 3}}{{n - 5}} = \lim \frac{{\frac{{2n}}{n} + \frac{3}{n}}}{{\frac{n}{n} - \frac{5}{n}}}\)\( = \lim \frac{{2 + \frac{3}{n}}}{{1 - \frac{5}{n}}} = \frac{2}{1} = 2\) nên chọn C.
+ Đáp án D : \(\lim \frac{{{n^2} + 2n - 3}}{{{n^2} - 2n + 2}}\)\( = \lim \frac{{\frac{{{n^2}}}{{{n^2}}} + \frac{{2n}}{n} - \frac{3}{{{n^2}}}}}{{\frac{{{n^2}}}{{{n^2}}} - \frac{{2n}}{{{n^2}}} + \frac{2}{{{n^2}}}}}\) \( = \lim \frac{{1 + \frac{2}{n} - \frac{3}{{{n^2}}}}}{{1 - \frac{2}{n} + \frac{2}{{{n^2}}}}} = 1 \ne 2\) nên loại D.