Cho F(x) là một nguyên hàm của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9iaabwgadaahaaWcbeqa % aiaadIhaaaGccqGHRaWkcaaIYaGaamiEaaaa!3F21! f\left( x \right) = {{\rm{e}}^x} + 2x\) thỏa mãn \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaabm % aabaGaaGimaaGaayjkaiaawMcaaiabg2da9maalaaabaGaaG4maaqa % aiaaikdaaaaaaa!3B90! F\left( 0 \right) = \frac{3}{2}\) . Tìm F(x)
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9maapeaabaWaaeWaaeaa % caqGLbWaaWbaaSqabeaacaWG4baaaOGaey4kaSIaaGOmaiaadIhaai % aawIcacaGLPaaacaqGKbGaamiEaaWcbeqab0Gaey4kIipakiabg2da % 9iaabwgadaahaaWcbeqaaiaadIhaaaGccqGHRaWkcaWG4bWaaWbaaS % qabeaacaaIYaaaaOGaey4kaSIaam4qaaaa!4C11! F\left( x \right) = \int {\left( {{{\rm{e}}^x} + 2x} \right){\rm{d}}x} = {{\rm{e}}^x} + {x^2} + C\)
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaabm % aabaGaaGimaaGaayjkaiaawMcaaiabg2da9maalaaabaGaaG4maaqa % aiaaikdaaaaaaa!3B90! F\left( 0 \right) = \frac{3}{2}\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi1HSTaae % yzamaaCaaaleqabaGaaGimaaaakiabgUcaRiaadoeacqGH9aqpdaWc % aaqaaiaaiodaaeaacaaIYaaaaaaa!3E61! \Leftrightarrow {{\rm{e}}^0} + C = \frac{3}{2}\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi1HSTaam % 4qaiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaaaaa!3BA4! \Leftrightarrow C = \frac{1}{2}\)
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9iaabwgadaahaaWcbeqa % aiaadIhaaaGccqGHRaWkcaWG4bWaaWbaaSqabeaacaaIYaaaaOGaey % 4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaaaaa!41A1! F\left( x \right) = {{\rm{e}}^x} + {x^2} + \frac{1}{2}\)