Cho hàm số \( f\left( x \right) = \frac{1}{{{x^2} + 1}}\) . Khi đó, nếu đặt x = tan t thì:
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Lời giải:
Báo saiTa có:
\(\begin{array}{l} x = \tan t \Rightarrow dx = \frac{1}{{{{\cos }^2}t}}dt = \left( {1 + {{\tan }^2}t} \right)dt\\ \to f\left( x \right)dx = \frac{1}{{{x^2} + 1}}dx = \frac{1}{{{{\tan }^2}t + 1}}\left( {1 + {{\tan }^2}t} \right)dt = dt \end{array}\)
ADMICRO
YOMEDIA
ZUNIA9