Cho hàm số y = f(x) có đạo hàm f'(x) liên tục trên [0;2] và f(2) = 3 và \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaaca % WGMbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaaeizaiaadIhaaSqa % aiaaicdaaeaacaaIYaaaniabgUIiYdGccqGH9aqpcaaIZaaaaa!40F4! \int\limits_0^2 {f\left( x \right){\rm{d}}x} = 3\). Tính \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaaca % WG4bGaaiOlaiqadAgagaqbamaabmaabaGaamiEaaGaayjkaiaawMca % aiaabsgacaWG4baaleaacaaIWaaabaGaaGOmaaqdcqGHRiI8aaaa!40E2! \int\limits_0^2 {x.f'\left( x \right){\rm{d}}x} \)
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaaca % WG4bGaaiOlaiqadAgagaqbamaabmaabaGaamiEaaGaayjkaiaawMca % aiaabsgacaWG4baaleaacaaIWaaabaGaaGOmaaqdcqGHRiI8aaaa!40E2! \int\limits_0^2 {x.f'\left( x \right){\rm{d}}x} \)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Zaa8 % qCaeaacaWG4bGaaeizamaabmaabaGaamOzamaabmaabaGaamiEaaGa % ayjkaiaawMcaaaGaayjkaiaawMcaaaWcbaGaaGimaaqaaiaaikdaa0 % Gaey4kIipaaaa!41B6! = \int\limits_0^2 {x{\rm{d}}\left( {f\left( x \right)} \right)} \)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Jaam % iEaiaac6cacaWGMbWaaeWaaeaacaWG4baacaGLOaGaayzkaaWaaqqa % aqaabeqaamaaCaaaleqabaGaaGOmaaaaaOqaamaaBaaaleaacaaIWa % aabeaaaaGccaGLhWoacqGHsisldaWdXbqaaiaadAgadaqadaqaaiaa % dIhaaiaawIcacaGLPaaacaqGKbGaamiEaaWcbaGaaGimaaqaaiaaik % daa0Gaey4kIipaaaa!49B8! = x.f\left( x \right)\left| \begin{array}{l} ^2\\ _0 \end{array} \right. - \int\limits_0^2 {f\left( x \right){\rm{d}}x} \)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0JaaG % OmaiaadAgadaqadaqaaiaaikdaaiaawIcacaGLPaaacqGHsislcaaI % ZaGaeyypa0JaaG4maaaa!3E52! = 2f\left( 2 \right) - 3 = 3\)