Cho hình phẳng \(A\) giới hạn bởi các đường \(y = 0, x = 4\), và \(y = \sqrt x - 1\). Tính thể tích của khối tròn xoay tạo thành khi quay hình \(A\) quanh trục hoành.
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Lời giải:
Báo saiHoành độ giao điểm của đường thẳng với trục hoành
\(\eqalign{
& \sqrt x - 1 = 0 \Leftrightarrow x = 1 \cr
& V = \pi \int\limits_1^4 {{{(\sqrt x - 1)}^2}} dx \cr &= \pi \int\limits_1^4 {(x - 2\sqrt x } + 1)dx \cr & = \pi \left. {\left( {\frac{{{x^2}}}{2} - \frac{{2{x^{\frac{3}{2}}}}}{{\frac{3}{2}}} + x} \right)} \right|_1^4\cr &= \left. {\pi \left( {{{{x^2}} \over 2} - {4 \over 3}x\sqrt x + x} \right)} \right|_1^4 \cr &= {{7\pi } \over 6} \cr} \)
ADMICRO
YOMEDIA
ZUNIA9