Tập nghiệm của bất phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ % gacaGGNbWaaSbaaSqaaiaaiodaaeqaaOWaaSaaaeaacaaI0aGaamiE % aiabgUcaRiaaiAdaaeaacaWG4baaaiabgsMiJkaaicdaaaa!408F! {\log _3}\frac{{4x + 6}}{x} \le 0\) là:
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ % gacaGGNbWaaSbaaSqaaiaaiodaaeqaaOWaaSaaaeaacaaI0aGaaeiE % aiabgUcaRiaaiAdaaeaacaWG4baaaiabgsMiJkaaicdacqGHuhY2da % GabaabaeqabaWaaSaaaeaacaaI0aGaaeiEaiabgUcaRiaaiAdaaeaa % caWG4baaaiabg6da+iaaicdaaeaadaWcaaqaaiaaisdacaqG4bGaey % 4kaSIaaGOnaaqaaiaadIhaaaGaeyizImQaaGymaaaacaGL7baacqGH % uhY2daGabaabaeqabaGaamiEaiabgYda8iabgkHiTmaalaaabaGaaG % 4maaqaaiaaikdaaaGaeyikIOTaamiEaiabg6da+iaaicdaaeaacqGH % sislcaaIYaGaeyizImQaamiEaiabgYda8iaaicdaaaGaay5EaaGaey % i1HSTaeyOeI0IaaGOmaiabgsMiJkaadIhacqGH8aapcqGHsisldaWc % aaqaaiaaiodaaeaacaaIYaaaaaaa!6DB9! {\log _3}\frac{{4{\rm{x}} + 6}}{x} \le 0 \Leftrightarrow \left\{ \begin{array}{l} \frac{{4{\rm{x}} + 6}}{x} > 0\\ \frac{{4{\rm{x}} + 6}}{x} \le 1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x < - \frac{3}{2} \vee x > 0\\ - 2 \le x < 0 \end{array} \right. \Leftrightarrow - 2 \le x < - \frac{3}{2}\)