Cho b > 1, sinx > 0, cosx > 0 và \({\log _b}\sin x = a\) Khi đó \({\log _b}\cos x\) bằng bao nhiêu?
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 12
Lời giải:
Báo saiTa có \({\log _b}\sin x = a \Rightarrow \sin x = {b^a} \)
\(\Leftrightarrow {\sin ^2}x = {\left( {{b^a}} \right)^2}\)
\( \Rightarrow {\cos ^2}x = 1 - {\sin ^2}x = 1 - {\left( {{b^a}} \right)^2}\)
\(\Leftrightarrow \cos x = \sqrt {1 - {{\left( {{b^a}} \right)}^2}} \)
Khi đó \({\log _b}\cos x = {\log _b}{\left( {1 - {{\left( {{b^a}} \right)}^2}} \right)^{\dfrac{1}{2}}}\)\(\, = \dfrac{1}{2}{\log _b}\left( {1 - {{\left( {{b^a}} \right)}^2}} \right)\)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi giữa HK1 môn Toán 12 năm 2020
Trường THPT Lý Tự Trọng
13/11/2024
59 lượt thi
0/30
Bắt đầu thi
ADMICRO
YOMEDIA
ZUNIA9