Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình bên. Trong các giá trị a, b, c, d có bao nhiêu giá trị âm?
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 12
Lời giải:
Báo saiĐồ thị cắt trục tung tại điểm dưới trục hoành nên: \(d < 0\)
\(\mathop {\lim }\limits_{x \to + \infty } y = - \infty \Rightarrow a < 0\)
\(y' = 3a{x^3} + 2bx + c\). Giả sử \(y' = 0\) có 2 nghiệm \({x_1} < 0 < {x_2}\)
\( \Rightarrow {x_1} + {x_2} > 0 \Rightarrow - \dfrac{b}{a} > 0 \Rightarrow b > 0\)
Đồ thị có 2 điểm cực trị nằm ở 2 phía của trục tung nên hoành độ của hai điểm này trái dấu\( \Rightarrow {x_1}.{x_2} < 0 \Rightarrow \dfrac{c}{a} < 0 \Rightarrow c < 0\)
Chọn D
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ADMICRO
YOMEDIA
ZUNIA9