Cho hình chóp đều S.ABC có cạnh đáy bằng a, cạnh bên bằng 2a. Gọi M là trung điểm của SA. Thể tích của khối chóp M.ABC bằng
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có:\({S_{ABC}} = \dfrac{{{a^2}\sqrt 3 }}{4}.\)
\(AO = \dfrac{2}{3}AD = \dfrac{2}{3}.\dfrac{{a\sqrt 3 }}{2} = \dfrac{{a\sqrt 3 }}{3}.\)
Áp dụng định lý Pitago cho \(\Delta SAO\) vuông tại \(O\) ta có:
\(SO = \sqrt {S{A^2} - A{O^2}} = \sqrt {4{a^2} - {{\left( {\dfrac{{a\sqrt 3 }}{3}} \right)}^2}} = \dfrac{{a\sqrt {33} }}{3}.\)
Gọi \(I\) là hình chiếu vuông góc của \(M\) trên \(AO.\)
Khi đó ta có: \(MI = \dfrac{1}{2}SO\) (định lý Ta-let).
\(\begin{array}{l} \Rightarrow MI = \dfrac{{a\sqrt {35} }}{6}.\\ \Rightarrow {V_{MABC}} = \dfrac{1}{3}MI.{S_{ABC}} = \dfrac{1}{3}.\dfrac{{a\sqrt {33} }}{6}.\dfrac{{{a^2}\sqrt 3 }}{4} = \dfrac{{{a^3}\sqrt {11} }}{{24}}.\end{array}\)
Chọn D.
Đề thi HK1 môn Toán 12 năm 2021-2022
Trường THPT Lý Thường Kiệt