Cho hình chóp S.ABCD có đáy là hình thoi, tam giác SAB đều và nằm trong mặt phẳng vuông góc với mặt phẳng \(\left( {ABCD} \right)\). Biết \(AC = 2a,{\mkern 1mu} {\mkern 1mu} BD = 4a\). Tính theo \(a\) khoảng cách giữa hai đường thẳng AD và SC.
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi \(I\) là trung điểm của AB \( \Rightarrow SI \bot AB\) (do tam giác SAB đều).
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{\left( {SAB} \right) \bot \left( {ABCD} \right)}\\{\left( {SAB} \right) \cap \left( {ABCD} \right) = AB}\\{\left( {SAB} \right) \supset SI \bot AB}\end{array}} \right.\) \( \Rightarrow SI \bot \left( {ABCD} \right)\).
+) Ta thấy \(AD\parallel BC{\mkern 1mu} {\mkern 1mu} \left( {gt} \right) \Rightarrow d\left( {AD;SC} \right)\)
\( = d\left( {AD;\left( {SBC} \right)} \right) = d\left( {A;\left( {SBC} \right)} \right)\).
Mà \(AI \cap \left( {SBC} \right) = B \Rightarrow \dfrac{{d\left( {A;\left( {SBC} \right)} \right)}}{{d\left( {I;\left( {SBC} \right)} \right)}} = \dfrac{{AB}}{{IB}} = 2\).
\( \Rightarrow d\left( {A;\left( {SBC} \right)} \right) = 2d\left( {I;\left( {SBC} \right)} \right)\)
\( \Rightarrow d\left( {AD;SC} \right) = 2d\left( {I;\left( {SBC} \right)} \right)\).
Trong \(\left( {ABCD} \right)\), kẻ \(IH \bot BC{\mkern 1mu} {\mkern 1mu} \left( {H \in BC} \right)\). Trong \(\left( {SIH} \right)\) kẻ \(IK \bot SH{\mkern 1mu} {\mkern 1mu} \left( {K \in SH} \right)\) ta có:
\(\left\{ {\begin{array}{*{20}{l}}{BC \bot IH}\\{BC \bot SI{\mkern 1mu} {\mkern 1mu} \left( {SI \bot \left( {ABCD} \right)} \right)}\end{array}} \right.\) \( \Rightarrow BC \bot \left( {SIH} \right) \Rightarrow BC \bot IK\).
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{IK \bot SH}\\{IK \bot BC}\end{array}} \right. \Rightarrow IK \bot \left( {SBC} \right)\)\( \Rightarrow d\left( {I;\left( {SBC} \right)} \right) = IK\).
Gọi \(O = AC \cap BD\) ta có \(AC \bot BD\) tại \(O\) và \(O\) là trung điểm của \(AC,{\mkern 1mu} {\mkern 1mu} BD\).
+) Tam giác AOB vuông tại \(O\) có \(AO = \dfrac{{AC}}{2} = a;{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} BO = \dfrac{{BD}}{2} = 2a\).
\( \Rightarrow AB = \sqrt {O{A^2} + O{B^2}} \) \( = \sqrt {{a^2} + {{\left( {2a} \right)}^2}} {\rm{\;}} = a\sqrt 5 {\rm{\;}} = BC\) (Định lí Pytago).
Ta có \({S_{ABCD}} = \dfrac{1}{2}AC.BD = \dfrac{1}{2}.2a.4a = 4{a^2}\).
\( \Rightarrow {S_{ABC}} = \dfrac{1}{2}{S_{ABCD}} = 2{a^2}\)\( \Rightarrow {S_{IBC}} = \dfrac{1}{2}{S_{ABC}} = {a^2}\).
Mặt khác \({S_{IBC}} = \dfrac{1}{2}IH.BC \Rightarrow IH = \dfrac{{2{S_{IBC}}}}{{BC}}\)\( = \dfrac{{2{a^2}}}{{a\sqrt 5 }} = \dfrac{{2a\sqrt 5 }}{5}\).
+) Tam giác SAB đều cạnh \(a\sqrt 5 \)\( \Rightarrow SI = \dfrac{{\sqrt 3 }}{2}.a\sqrt 5 {\rm{\;}} = \dfrac{{a\sqrt {15} }}{2}\).
+) Áp dụng hệ thức lượng trong tam giác vuông SIH ta có:
\(IK = \dfrac{{SI.IH}}{{\sqrt {S{I^2} + I{H^2}} }} = \dfrac{{\dfrac{{a\sqrt {15} }}{2}.\dfrac{{2a\sqrt 5 }}{5}}}{{\sqrt {{{\left( {\dfrac{{a\sqrt {15} }}{2}} \right)}^2} + {{\left( {\dfrac{{2a\sqrt 5 }}{5}} \right)}^2}} }}\)\( = \dfrac{{2a\sqrt {1365} }}{{91}}\).
Vậy \(d\left( {AD;SC} \right) = 2IK = \dfrac{{4a\sqrt {1365} }}{{91}}\).
Chọn D.
Đề thi giữa HK2 môn Toán 12 năm 2021-2022
Trường THPT Nguyễn Trãi