Cho hình chóp SA BC có đáy ABC là tam giác vuông cân tại B với AC = a biết SA vuông góc với đáy ABC và SB hợp với đáy một góc 60o. Tính thể tích hình chóp.
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 12
Lời giải:
Báo saiTam giác ABC vuông cân tại B
Ta có:
\(A{B^2} + B{C^2} = A{C^2} \)
\(\Rightarrow AB = \sqrt {\dfrac{{A{C^2}}}{2}} = \dfrac{{a\sqrt 2 }}{2}\)
\(\tan {60^ \circ } = \dfrac{{SA}}{{AB}} \)
\(\Rightarrow SA = \tan {60^ \circ }.AB = \sqrt 3 .\dfrac{{a\sqrt 2 }}{2} = \dfrac{{a\sqrt 6 }}{2}\)
Khi đó ta có:
\(V = \dfrac{1}{3}SA.{S_{ABC}} = \dfrac{1}{3}.\dfrac{{a\sqrt 6 }}{2}.\dfrac{1}{2}{\left( {\dfrac{{a\sqrt 2 }}{2}} \right)^2}\)\(\, = \dfrac{{{a^3}\sqrt 6 }}{{24}}\)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ADMICRO
YOMEDIA
ZUNIA9