Cho khối chóp tứ giác đều \(S.ABCD\)có cạnh đáy bằng \(\sqrt 2 a\) và tam giác \(SAC\)đều. Thể tích của khối chóp đã cho bằng
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 12
Lời giải:
Báo sai
\({S_{ABCD}} = {\left( {\sqrt 2 a} \right)^2} = 2{a^2}\)
Gọi \(O = AC \cap BD\)\( \Rightarrow \)\(SO \bot \left( {ABCD} \right)\)\( \Rightarrow \)\(SO\) là đường cao của chóp, \(AC = AB\sqrt 2 = 2a\)
\(SO\) là đường cao trong tam giác đều \(SAC\)\( \Rightarrow \)\(SO = \dfrac{{2a.\sqrt 3 }}{2} = a\sqrt 3 \)
Vậy \(V = \dfrac{1}{3}.2{a^2}.a\sqrt 3 = \dfrac{{2\sqrt 3 {a^3}}}{3}\).
Chọn C.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ADMICRO
YOMEDIA
ZUNIA9