Gọi M, N là giao điểm của đồ thị hàm số \(y = \dfrac{{x + 1}}{{x - 2}}\) và đường thẳng d: y = x + 2. Hoành độ trung điểm I của đoạn MN là
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 12
Lời giải:
Báo saiXét pt:
\(\begin{array}{l}\dfrac{{x + 1}}{{x - 2}} = x + 2{\rm{ }}\left( {{\rm{Dk: x}} \ne {\rm{2 }}} \right)\\ \Rightarrow x + 1 = {x^2} - 4\\ \Leftrightarrow {x^2} - x - 5 = 0\\ \Rightarrow \left[ \begin{array}{l}{x_M} = \dfrac{{1 + \sqrt {21} }}{2}\\{x_N} = \dfrac{{1 - \sqrt {21} }}{2}\end{array} \right.\end{array}\)
Do I là trung điểm của MN nên \({x_I} = \frac{{{x_M} + {x_N}}}{2} = \frac{{\frac{{1 + \sqrt {21} }}{2} + \frac{{1 - \sqrt {21} }}{2}}}{2}= \dfrac{1}{2}\)
Chọn D
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi giữa HK1 môn Toán 12 năm 2022-2023
Trường THPT Nguyễn Du
13/11/2024
197 lượt thi
0/40
Bắt đầu thi
ADMICRO
YOMEDIA
ZUNIA9