Gọi M, N là giao điểm của đồ thị hàm số \(y = \dfrac{{x + 1}}{{x - 2}}\) và đường thẳng d: y = x + 2. Hoành độ trung điểm I của đoạn MN là?
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 12
Lời giải:
Báo saiXét pt:
\(\begin{array}{l}\dfrac{{x + 1}}{{x - 2}} = x + 2{\rm{ }}\left( {{\rm{Dk: x}} \ne {\rm{2 }}} \right)\\ \Rightarrow x + 1 = {x^2} - 4\\ \Leftrightarrow {x^2} - x - 5 = 0\\ \Rightarrow \left[ \begin{array}{l}{x_M} = \dfrac{{1 + \sqrt {21} }}{2}\\{x_N} = \dfrac{{1 - \sqrt {21} }}{2}\end{array} \right.\end{array}\)
Do I là trung điểm của MN nên \({x_I} = \frac{{{x_M} + {x_N}}}{2} = \frac{{\frac{{1 + \sqrt {21} }}{2} + \frac{{1 - \sqrt {21} }}{2}}}{2}= \dfrac{1}{2}\).
Đáp án là A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi giữa HK1 môn Toán 12 năm 2023-2024
Trường THPT Nguyễn Thị Diệu
14/11/2024
76 lượt thi
0/40
Bắt đầu thi
ADMICRO
YOMEDIA
ZUNIA9